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Electron localization functions and local measures of the covariance 
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Abstract. The electron localization measure proposed by Becke and Edgecombe is shown to be related 
to the covariance of the electron pair distribution. Just as with the electron localization function, the local 
covariance does not seem to be, in and of itself, a useful quantity for elucidating shell structure. A func-
tion of the local covariance, however, is useful for this purpose. A different function, based on the hyper-
bolic tangent, is proposed to elucidate the shell structure encapsulated by the local covariance; this 
function also seems to work better for the electron localization measure of Becke and Edgecombe. In ad-
dition, we propose a different measure for the electron localization that incorporates both the electron lo-
calization measure of Becke and Edgecombe and the Laplacian of the electron density; preliminary 
indications are that this measure is especially good at elucidating the shell structure in valence regions. 
Methods for evaluating electron localization functions directly from the electron density, without re-
course to the Kohn-Sham orbitals, are discussed.  
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1. Introduction 

The electron pair is perhaps the most useful concept 
in chemistry. Among the obvious related facts are 
“electron pairing” in covalent bonds, the octet and 
18-electron rules, and “lone pairs” of electrons. 
Many of these empirically useful rules are encapsu-
lated in the Lewis “electron dot” structures and va-
lence-shell electron pair repulsion (VSEPR) that 
pervade general chemistry texts and, indeed, the 
chemical research literature.1 The attempt to parti-
tion molecules into “electron pair regions” and thus 
obtain computationally the conceptually useful 
Lewis “picture” of molecules dates back to the pio-
neering studies of Daudel.2–5 One intuitively appeal-
ing criterion is that the number of electrons in an 
electron pair region, Ω, should fluctuate relatively 
little, so that6–8  
 

 ( ) ( )2 2ˆ ˆ| | | | ,N Nσ σ〈Ψ Ω Ψ〉 − 〈Ψ Ω Ψ〉  (1) 

 
is small. Here we use Nσ(Ω) to represent the operator 
for the number of σ-spin electrons in the region Ω,  
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where χΩ(r) is the characteristic function for the re-
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and 〈σ(i)| is the projection operator for electron i 
having spin σ. Bader and Stephens have noted that, 
despite its intuitive appeal, in many molecules the 
minimal fluctuation remains quite large and so this 
criterion sometimes fails to yield intuitive electron 
dot diagrams.9 The recent proposal by Savin and 
coworkers to define molecular regions be defined so 
that the probability of observing a chosen number of 
electrons in each region is maximized is related to 
the minimum fluctuation approach.10 
 An alternative construction of a Lewis-type pic-
tures for molecules was proposed by Becke and 
Edgecombe,11–13 with an alternative subsequently 
proposed by Schmider and Becke.14,15 This approach 
is based on a consideration of the probability that an 
electron with spin σ is a distance s away from r, 
given than there is another σ-spin electron at r. Ex-
pressing the probability as  
 

 2( ) ( )( [ , ] ...),P s sσσ σ α βρ κ ρ ρ≡ +r r  (4) 

 
reveals that κ[ρ] is a measure of how “localized” the 
Fermi hole is around the reference electron. In prac-
tice, because the core electrons are always the most 
localized, it is more interesting to consider where 



Paul W Ayers 

 

442

electrons are “especially localized”. One does this 
by comparing to the result for a reference system, 
which is often taken to be the free electron gas with 
electron spin-density ρσ(r).11 This gives, as a meas-
ure of electron localization,  
 

 
2 2 /3 5/3

( ) [ , ]
( ) .

(2/3){(3/10)(6 ) ( )}
σ α β

σ
σ

ρ κ ρ ρ
ξ

π ρ
≡

r
r

r
 (5) 

 
The term in braces is just the Thomas–Fermi kinetic 
energy density.11,16–18 The form for κ[ραρβ] differs 
depending on how one derives (4).19–22 The Becke–
Edgecombe form is obtained by expressing the 
probability of observing a σ-spin electron at r′ when 
there is another σ-spin electron at r, Pσσ(r′|r), and 
then performing a spherical average with respect to 
(r′–r). If, in addition, one neglects the contribution 
to Pσσ(r′|r) from the Coulomb hole, then 
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where γσσ(r, r′) is the Kohn–Sham density matrix for 
σ-spin electrons,  
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and (ψiσ} are the σ-spin orbitals solving the Kohn–
Sham equations. This gives11 
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where the positive-definite kinetic energy density is 
defined by 
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and the “Weisacker kinetic energy density” is defined 
by  
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Equations (6)–(10) represent the results in the “ex-
change-only” approximation, are and exact for sys-

tems of non-interacting electrons, where the only 
structure to the electron-electron distribution func-
tion originates in antisymmetry, as dictated by the 
Pauli principle. 
 The Schmider–Becke form is obtained by spheri-
cally averaging γσσ(r, r′) about (r′–r) and then sub-
stituting into the analogue of (6), yielding23 
 

 2
3[ , ] [ ( ) / ( )].SB

σ α β σ σκ ρ ρ τ ρ≡ r r  (11) 

 
Equation (11) has also been rationalized using local 
thermodynamics.24,25 Indeed, the Becke–Edgecombe 
and Schmider–Becke electron localization functions 
can each be derived from many different appro-
aches, owing to the fact that functions related to the 
Fermi hole are similar to Pσσ(s|r) through order s2, 
typically differing only in higher orders. For exam-
ple, the following approaches yield the same funda-
mental measures of electron localization (through 
second order in s): 
 
(a) Conventional ELF: Given that a σ-spin elec-
tron is at r, what is the probability another electron 
with the same spin is s units from r? 
(b) Centre of Mass ELF: Given that the center of 
mass of two σ-spin electrons is at r, what is the 
probability the electrons are s units apart? 
(c) Pair regions ELF: What is the probability 
that two σ-spin electrons are within s units of r?26 A 
variant of this approach, where the probability of 
observing a pair of σ-spin electrons in a small cubic 
volume around the point, r, was considered by Ko-
hout.27 
 
The last approach, based on the probability of obser-
ving electron pairs in small regions of space, is es-
pecially appealing since a divisor proportional to 

5/3( )σρ r  naturally arises. This obviates the need to 
appeal to the free electron gas. 
 The Becke–Edgecombe approach has the advan-
tage of addressing the exchange-correlation hole di-
rectly and, in the author’s experience, tends to give a 
more distinct separation of electron-pair regions. For 
this reason, the present paper is focused on the 
Becke–Edgecombe form. 
 Here we seek to answer several questions related 
to the topic of electron localization measures. First 
of all, how should we divide a molecule into elec-
tron pair regions? We address this question in §§ 2.1 
and 2.2. Pertaining to (5), the Thomas–Fermi refer-
ence seems arbitrary. Does this reference have some 
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physical significance and, if not, would other refer-
ence kinetic energy densities work equally well? In 
§§ 2.3 and 2.4, we show that, quite apart from the 
Thomas–Fermi model, a term proportional to ρ5/3(r) 
belongs in the denominator of (5). Finally, evaluat-
ing the kinetic energy density requires knowledge of 
the Kohn-Sham orbitals.28 Such orbitals, however, 
are not immediately accessible from standard tech-
niques for calculating correlated wave functions, 
and require a subsequent calculation to discern the 
Kohn-Sham orbitals from the correlated density.29–32 
Electron localization measures can be computed di-
rectly from the correlated electron density, without 
recourse to the Kohn-Sham orbitals,33–35 and in §2.5 
we discuss this approach and offer a small refine-
ment. Throughout these sections, we shall use the 
neon atom as a representative example. In §2.6, we 
extend our analysis to the argon, krypton, and xenon 
atoms. 
 Readers who are primarily interested in the final 
results, rather than their theoretical motivations, will 
find key results derived in §§2.3 through 2.5, ap-
plied in §2.6, and summarized in §3.  

2. Theoretical results 

2.1 The norm of the covariance matrix as a  
measure of electron localization 

We wish to derive a new electron localization meas-
ure that, though directly related to the correlation 
between and fluctuation of the electron distribution, 
is different from existing approaches. We start by 
listing several key properties a “good” partitioning 
of a molecule into electron-pair regions should pos-
sess: 
 
(i) The molecule should be divided into Nσ re-
gions, 1{ }N

i i
σ

=Ω  and each region should contain, on 
average, one σ-spin electron. 
(ii) The regions should be “weakly coupled”. A 
simple and computationally useful criterion is that 
the covariance of the number of σ-spin electrons in 
regions Ωi and Ωj should be small  

 2 ˆ ˆ| ( ) ( ) |ij i jN Nσ σσ ≡ 〈Ψ Ω Ω Ψ〉  

   ˆ ˆ| ( ) | | ( ) | 0i jN Nσ σ− 〈Ψ Ω Ψ〉〈Ψ Ω Ψ〉 ≈ . (12) 

This reflects the Lewis picture, whereby electrons 
within a pair are highly correlated, but electrons in 

different pairs are only weakly correlated. For in-
stance, if 2 0ijσ = , then the number of electrons in Ωi 
is, to first order, independent of the number of elec-
trons in Ωj. This is consistent with the Lewis picture, 
wherein “electron pairs” interact only weakly with 
one another. 
(iii) The fluctuation in the electron number, as 
given by (1), should be minimal. Thus, among parti-
tionings which satisfy constraints (i) and (ii), we are 
interested in those with the smallest possible values of  
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Several points should be mentioned. First of all, we 
will typically have+ 
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where gσσ(r, r′) = 1 + 1hσσ(r, r′) is the pair correla-
tion function and  
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+Observing an electron in the region Ωi tends to decrease 
the probability of observing an electron in the region Ωj, 
mostly because there are only N – 1 electrons “left” to be in 
this region. More precisely, due to the Pauli exclusion prin-
ciple, the Fermi hole indicates that the hole correlation 
function is predominately negative and, if the hole correla-
tion function were strictly negative, (14) would always be 
true. 



Paul W Ayers 

 

444

is the pair distribution function or “pair density.” 
Equations (14) and (15), together, imply that  
 

 2 0.iiσ >  (17) 

 
A key implication of (15) is that the minimum co-
variance problem (criterion (ii)) and the minimum 
electron-number fluctuation problem (criterion (iii)) 
are one and the same.  
 To derive (15), use the normalization of the pair 
correlation function, 
 

 ( )( ) , d 1,g Nσ σσ σρ ′ = −∫ r r r r  (18) 

along with the result for the variance, 
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For a Slater determinate wave function (where 
hσσ(r, r′′) ≤ 0), a necessary and sufficient condition 
for 2 2 0ij iiσ σ= =  is that the hole correlation function 

be strictly localized in the regions {Ωi}, so that the 
hole correlation function is always zero when r and 
r′ are in different regions: 
 
 ( , ) 0, andi ihσσ ′ ′= ∈Ω ∉Ωr r r r . (20) 

 
Equation (20) is only true if electrons in different 
regions are totally uncorrelated. 
 It follows from the previous considerations that a 
“good partitioning” of a molecule into electron-pair 
regions can be obtained by choosing regions, {Ωi}, 
such that the norm of the covariance matrix, 2

ijσ  is 
small. That is, the optimal regions minimize 2|| ||ijσ . 
The choice of norm one adopts depends on how one 
wishes to measure the “non-locality” of a given co-
variance matrix. Perhaps the simplest choice is the 
Frobenius norm, which is simply the square root of 
the sums of the squares of the elements of the co-
variance matrix,  
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subject to the constraint (cf. (i)) that  
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From (15), we see that  
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and 2|| ||ij Fσ  can be minimized by considering only 
the diagonal or the off-diagonal elements of the co-
variance matrix. 
 We postulate, based on the preceding theoretical 
considerations, that the regions that minimize (21) 
will give useful electron pair “loges”. However, per-
forming computational tests of these ideas is diffi-
cult (mostly because the characteristic functions, 
(3), to be optimized are discontinuous) and will not 
be pursued here. 

2.2 Pointwise measures of covariance 

Insofar as the purpose of the electron localization 
function is to provide qualitative information about 
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electron pairing, undertaking time-consuming calcu-
lations (as minimizing the norm of the covariance 
matrix, (21), seems to entail), seems inappropriate. 
In the spirit of the above analysis, however, we can 
derive various local measures of the fluctuation and 
covariance, and these measures seem to be much 
more tractable computationally than the electron lo-
calization techniques discussed in the previous sec-
tion. In this section, two convenient measures of 
local covariance are proposed. 
 Towards this goal, note that the number of σ-spin 
electrons at ri given that there is an σ-spin electrons 
electron at rj is 2( ( , ) / ( ))di j j i

σσ
σρ ρr r r r , while the 

average number of σ-spin electrons at ri is ( )d .i iσρ r r  
Given a σ-spin electron at rj, the amount by which 
the number of σ-spin electrons at ri differs from its 
average value is  
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σ σ σ σρ ρ ρ− = −r r r r r r  (24) 

 
and the total “fluctuation” in the electron number at 
ri per electron, 
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is then obtained by integrating over all possible val-
ues of rj: 
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Because the exact hole correlation function is 
bounded and decays asymptotically as |ri–rj|

–5,36 the 
integral in (26) exists. However, for approximate 
models, the integral in (26) might be infinite. In 
practice, I have observed that as the reference point, 
ri, moves away from an atom’s nucleus, it becomes 
practically impossible to numerically evaluate the 
integral in (26). This is probably because when the 
electron density at ri is small, the normalization con-
straint on the exchange hole requires h(ri, rj) to be very 
diffuse, complicating the evaluation of [ ; ]h

iσζ ρ r . 
 The interpretation of ( )h

iσζ r  is simple: ( )h
iσζ r  

measures the relative amount by which the other 
electrons in the system cause the electron density at 

ri to differ from its average value. The decision to 
use the average per electron change in electron 
population at ri due to the presence of an electron at 
rj rather than the total change – that is, the decision 
to divide by ρσ(ri)dri in (26) – is motivated by the 
recognition that where the electron density is very 
small (as in the asymptotic regions) the total fluctua-
tion observed will be very small, even though the 
relative fluctuation can be quite large. Consequently, 
it seems prudent to use the fluctuation per electron 
of the conditional probability, rather than its abso-
lute value. Computational “experiments” reveal this 
to be a reasonable decision. 
 The preceding analysis focused on minimizing the 
fluctuation in the conditional distribution function, 
and was motivated by the consideration of this func-
tion in the work of Becke and Edgecombe. To show 
the relationship between minimizing the Frobenius 
norm of the covariance matrix, (21), and (26), con-
sider a set of P distinct regions 1{ }P

i i=Ω  which 
“cover” the molecule (or at least all the molecular 
regions that containing significant electron density). 
We have that  
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As the regions 1{ }P
i i=Ω  become smaller and smaller, 

we can approximate the integration of a function 
over Ωi by a value the function assumes on the re-
gion multiplied by the volume of the region. In the 
limit of infinitesimal regions, we have  
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2( ( , ) ( ) ( ))d d ,ij i j i j i j
σσ

σ σσ ρ ρ ρ= −r r r r r r  (29) 

 
where dri and drj are the differential volumes of the 
regions and ri ∈ Ωi and rj ∈ Ωj. Equation (26) is 
seen to be a differential analogue of the formula, 
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where Nj denotes the number of electrons in Ωi. Us-
ing (23), it is not difficult to show that 0h

iζ =  if and 
only if 2|| || 0ij Fσ = .  
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 We now propose a different measure for electron 
localization: one which is closer to the spirit of the 
results in §2.1. To do this, we form the correlation 
matrix,  
 

 2 2 2/( )ij ij ii jjR σ σ σ≡ . (31) 

 
The number of σ-spin electrons in region Ωi, Nσ(Ωi), 
is independent of the number of electrons in the re-
gion, Ωi, if Rij ≡ 0. Consequently, minimizing the 
fluctuation in the number of electrons in region Ωi 
entails minimizing 

 2 ,
P
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j i

R
≠

∑  (32) 

and the total overall fluctuation can be minimized by 
minimizing ||R–I||F, where I is the identity matrix. 
Considering the correlation matrix instead of the co-
variance matrix has a major advantage when we 
consider the limit where the regions, 1{ }P

i i=Ω , become 
volume elements for Riemann integration. Unlike 
the covariance matrix, whereby the fluctuation per 
electron goes to zero as the volume if the regions 
approach zero, 
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the zero-volume limit of the per-electron correlation 
at x gives the useful result 
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  2( ) ( , )d ,j i j jhσ σσρ= ∫ r r r r  (34) 

where, as in (28), ri ∈ Ωi and rj ∈ Ωj. In evaluating 
(34), we used the fact that (cf. (19)),  
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because gσσ(ri, ri) = 0. 
 By this argument, the index 
 

 2( ) ( ) ( , )d ,R
i j i j jhσ σ σσζ ρ≡ ∫r r r r r  (36) 

 
is a natural “local representation” of the “minimum 
fluctuation” criterion for electron localization. Figure 
1 plots ( )R

σζ r  for the neon atom. The function is 
largest in the regions associated with the 1s and (2s, 
2p) orbitals and smaller in the “intershell” region. 
 One might suspect that a high degree of electron 
localization would be associated with a small value 
for the local covariance, as measured by ( )h

iσζ r  or 
( )R

iσζ r . Reference to figure 1 establishes that the 
opposite is in fact true. Taking the volumes of the 
regions, {Ωi} towards zero, one forces the local co-
variance to become rather large because σ-spin elec-
trons at ri and ri + dri are, of course, be highly 
correlated. Squaring the hole correlation function 
tends to diminish the importance of regions where 
hσσ(ri, rj) ≈ 0 relative to those where hσσ(ri, rj) ≈ –1. 
Consequently, a hole that is localized – so that the 
volume over which its value is close to –1 is rela-
tively large – will be associated with larger values of 

( )h
iσζ r  and ( )R

iσζ r  than less localized holes. When 
the hole correlation function, hσσ(ri, rj), is very com-
pact, its square is even more compact (recall that the 
 
 

 
 
Figure 1. The pointwise minimum correlation per elec-
tron, ( )R

σζ r , for the neon atom (see (36)). 
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exchange hole satisfies –1 ≤ hσσ(ri, rj) ≤ 0); indeed, 
in figure 1, we observe that 
 

 2( )( ( , )) d ( ) 1R
j i j j ih σρ ζ= <∫ r r r r r  

       ( ) ( , )d .j i j jhρ= −∫ r r r r  (37) 

 
More localized holes give larger regions where 
(hσσ(ri, rj))

2 is appreciable, giving larger values for 
( )h

iσζ r  and ( )R
iσζ r . This will become more clear in 

the following sections, when a specific model for 
hσσ(ri, rj) is considered.  

2.3 The link between the local covariance, ( )h
iσζ r , 

and the Becke–Edgecombe ELF 

The local covariance measure, ( )h
iσζ r  (cf. (26)) is 

closely linked to the electron localization measure 
previously proposed by Becke and Edgecombe (cf. 
(5)). To show this, write (26) using the spherical av-
eraged exchange correlation hole,  
 

 
2

1
4

0 0

( , ) ( , , , )sin( )d dSA
i j i jh r h r

π π

σσ σσπ θ φ θ φ θ≡ ∫ ∫r r , (38) 

 
obtaining 
 

  2 2[ ; ] ( ) ( ( , )) 4 d .h SA
i i i j j jh r r rσ σ σσζ ρ ρ π≡ ∫r r r  (39) 

 
Suppose we have a model functional, hSA

σσ[ρ; ri, rj], 
for the spherically averaged exchange-correlation 
hole. Since the pairing of electrons is imposed by 
the Pauli principle, we shall follow the lead of 
Becke and Edgecombe and model only the exchange 
hole. Next, suppose that the model functional has a 
single functional form, so that it takes the form, 
hσσ(k[ρ; ri] rj), where k[ρ; ri] is used to modulate the 
“width” of the hole. An expression for k[ρ; ri] can 
be deduced from (4). Specifically, from 
 
 ∂2hσσ(k[ρ; ri] rj)/

2
jr∂  = ∂2hσσ(rj)/

2
jr∂ , 

 

       2[ ; ] 2 [ , ; ]i ik α βρ κ ρ ρ=r r , (40) 

we have 

 k[ρ; ri] = 2k[ρα,ρβ; ri]
1/2/h″(0). (41) 

The notation indicates that k[ρ; ri] is a functional of 
the electron density, ρ(r) and a function of the point, 

ri, where we are studying the degree of electron local-
ization. Similarly, 2k[ρα,ρβ; ri] is a functional of the 
spin-densities and a function of the location under 
investigation. 
 Substitution of (41) into (39) yields 
 

 
0

[ ; ] ( )h
i iσζ ρ ρ

∞

≡ ∫r r (hσσ
2 2.( [ ; ] )) 4 di j j jk r r rρ πr  
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i

ik
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ρ
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= 
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r

r
h 2

σσ
2( [ ; ] )4 ( [ ; ] )i j i jk r k rρ π ρr r  

            d( [ ; ] ) .jk rρ


× 


x  (42) 

Using (41), we obtain 

 [ ; ]h
iσζ ρ =r ((h″(0)/2)3/2 

0

∞

∫h 2
σσ

2( )4 d )x x xπ  

      3 /2
3 /2

( )
( ( )) .

[ , ; ]
i

i
i

σ
α β

ρ
ξ

κ ρ ρ
−∝

r
r

r
 (43) 

 
Thus, ( )h

iσζ r , when raised to the –2/3rd power, is 
proportional to the original Becke–Edgecombe meas-
ure of electron localization.  
 The proportionality constant in (43) depends on 
the model for the hole correlation function. Follow-
ing Lee and Parr,22 we choose a Gaussian model, h G

σσ 
2( ( ) )( ( ) ) ,i jk r

i jk r e
−≈ − rr  for the exchange hole: this 

choice gives better accuracy for the energy of 
atomic systems than a similar model based on the 
uniform electron gas. Substitution of the appropriate 
results into (43) gives 
 

 
3 /2

,
3 /2
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2 [ , ; ]
h G i

i BE
i

σ
σ

σ α β

ρπ
ζ ρ

κ ρ ρ
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.

4 [ ( ) ( )]
i
W

i i

σ

σ σ

ρπ
τ τ

 =   − 

r

r r
 (44) 

 
In figure 2 the Gaussian model for ( )h

iσζ r , (44), is 
plotted for the Neon atom. 
 When plotting electron localization functions, 
Becke and Edgecombe found it prudent to plot not 
the “raw” electron localization measure, but instead 
a function of the index,11  

 
2 2

1 1
( ) ~ .

1 ( ) 1 ( )
BE

i
i i

σ
σ σ

λ
ξ ζ −≡

+ +
r

r r
 (45) 

This author has found, however, that transformation 
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 Lσ(ri) 
1tanh( ( ) ( ))i iσ σξ ξ−≡ −r r  

      ~ 1tanh( ( ) ( ))i iσ σζ ζ −−r r  (46) 

 
is often even more effective in bringing out the essen-
tial structure of an electron localization measure. (In 
(45)–(46) we have indicated that analogous trans-
formations for the local covariances, ( ),iσζ r  can be 
obtained by substituting 1( )iσζ − r  for ( )iσξ r .) Figure 
3 compares the properties of these transformations 
for the Becke–Edgecombe ELF,  
 

 
2 2 /3 5/3

( ) ( )10
( )

3(6 ) ( )

W
BE i i

i
i

σ σ
σ

σ

τ τ
ξ

π ρ
−

≡
r r

r
r

, (47) 

 
revealing the superiority of the hyperbolic tangent 
form. Even more general than the hyperbolic tangent 
form, we can consider a measure such as  
 

 
 
Figure 2. The Gaussian model for the local covari-
ances, , ( )h G

iσζ r  (44), and , ( )R G
iσζ r  (62) of the neon atom. 

 

 

 
 
Figure 3. Comparison of the Becke–Edgecombe form, 
(45), and the hyperbolic tangent form, (46), of the elec-
tron localization function for the neon atom. For com-
parison purposes, the hyperbolic tangent form is mapped 
onto the unit interval. 

 Lσ(ri) tanh( ( ) ( ))k k
i iσ σξ ξ−≡ −r r  

      ~ 1tanh( ( ) ( ))k
i iσ σζ ζ −−r r  (48) 

 
where k ≥ 1. Larger values of k make the shell struc-
ture even more apparent than the simplest k = 1 case.  
 Figure 4 examines what occurs if we use a model 
other than the uniform electron gas as the “reference 
value” in the denominator of ( )BE

iσξ r . Specifically, 
for the nearly free electron gas, we would have  

 
( ) ( )

( )
( ) ( )

W
grad i i

i grad W
i i

σ σ
σ

σ σ

τ τ
ξ

τ τ
−

≡
−

r r
r

r r
 (49) 

where ( )grad
iστ r  is the local kinetic energy that re-

sults from the gradient expansion, (65). This form 
reduces to (47) for the uniform electron gas, but 
would be expected to provide a better description for 
systems with nonuniform electron density. However, 
the results are much less satisfactory. This is some-
what counterintuitive, since one might suppose that 
using a superior model for “reference value” would 
improve the quality of our results. The fact the 
model deteriorates for improved reference systems 
suggests that the significance of the ρ5/3(ri) depend-
ence in the denominator of (5) might be better un-
derstood through the local covariance argument 
presented here or one of the other reference-free ar-
guments available in the literature.26,27 

2.4 A measure of electron localization based on 
(36) 

We can also develop a measure of electron localiza-
tion based on ( )R

iσζ r  (cf. (36)). To do this, we change 
the coordinates of integration s = rj–ri,  
 

 
 

Figure 4. Dependence of the Becke–Edgecombe elec-
tron localization function on the choice of reference kinetic 
energy density. Lσ(r) (cf. (46)) is plotted for ( )BE

σξ r , 
(47), and the form using the gradient-corrected kinetic-
energy function, ( ),grad

σξ r  (49). 
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Integrals with the form of the innermost integral are 
evaluated using the general formula19 
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by which we attain, for (50),  
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Just as in the previous section, we assume that we 
have a model function for the integrand in (52), so 
that  

 2

0

( ) ( ) ( , [ , ] )4 d ,R
i i i if l s s sσζ ρ ρ π

∞

= ∫r r r r  (53) 

where l[ρ; ri] is a functional of the electron density 
and a function of the position of the reference elec-
tron. As before, we can write  
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and  
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so that, from (52),  
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From this we infer that  
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In writing this equation, we assume that 
2

2

( , )
0| 0.if s

ss

∂
=∂

<r  When the coefficient of s2 in (52) is 
not negative, the simplistic treatment used here is 
insufficient to characterize the function and, proble-
matically, the denominator in (57) is imaginary. In 
order to ensure that (57) is always a real-valued 
functional of the electron density, we introduce the 
absolute value into the denominator to obtain the 
working formula,  
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To determine the constant of proportionality in (57), 
we need to consider a model for ( , [ , ] )i if l sρr r . Again 
as before, we consider a Gaussian model, with  
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Within the confines of this model, we have that 
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and so, from (54),  
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The Gaussian model for ( )R
iσζ r , given by (62), is 

plotted in figure 2. 
 Superficial observation of , ( )R G

iσζ r  reveals that 
the shell structure in the Gaussian model is even 
more pronounced than it is in the true function, 

( )R
iσζ r . Part the discrepancy may be blamed on im-

perfections in the Gaussian model, which gives a lo-
calized hole. (The true exchange hole is significantly 
delocalized.) In addition, the superiority of the ap-
proximate result to the exact result may be attributed 
to the fact higher-order terms in the Taylor series 
expansion for the exchange hole (cf. (4)) can ob-
scure the decisiveness of the quadratic term in de-
scribing the relative extent of electron localization. 
By relying only on the quadratic term, the present 
model provides a clear indication of the relative 
amount of electron localization. 
 In figure 5, we plot the electron localization 
measures, Lσ

,[ ]h G
σζ  and Lσ

,[ ]R G
σζ  corresponding to 

(44) and (62), respectively. The form using the local 
representation of the correlation matrix, ,h G

σζ (ri), is 
particularly effective at distinguishing the shell 
structure of the Neon atom. The largest difficulty 
arises because of the divergence of the Laplacian 
near the atomic nucleus. If one keeps this in mind 
and neglects points very near the atomic nucleus, 
then there is no difficulty in clearly distinguishing 
the shell structure from Lσ

,[ ]R G
σζ . (Another alterna-

tive is to remove the singularity of the Laplacian by 
introducing a weight function; the next section pro-
vides insight into how this may be accomplished.) 
 Unsurprisingly, given the link between ,h G

σζ (ri) 
and the conventional electron localization function 
(recall that ,h G

σζ (ri) ∝ (ξσ(ri))
–3/2), Lσ

,[ ]h G
σζ  is also 

an effective measure of electron localization. The  
 
 

 
 

Figure 5. Electron-localization functions based on the 
local covariances, , ( )h G

iσζ r  (44), and , ( )R G
iσζ r  (62), of the 

neon atom.  

fluctuations in this localization measure are less pro-
nounced than those when the “raw” Becke–
Edgecombe measure, ξσ(ri) is used instead. This can 
be understood from the perspective of (48): raising 
the electron localization measure to a power, k, with 
|k| > 1, tends to enhance the shell structure.  

2.5 Computing ELFs without using orbitals 

The most time-consuming step in evaluating these 
measures of electron localization is the determina-
tion of the local kinetic energy, τσ(ri), which depends 
on the Kohn–Sham orbitals for a given system. 
While there are many methods for obtaining the 
Kohn–Sham orbitals from the electron density (as 
computed from computational chemistry or meas-
ured by X-ray spectroscopy),29–32 it is reasonable to 
wonder whether we might avoid computing the orbi-
tals. One way to do this is to consider using an ap-
proximate kinetic energy functional computed using 
the gradient expansion.33–35 
 In figure 6 we consider several different approxi-
mate expressions for the kinetic-energy, including 
the Thomas–Fermi form,  
 

 2 2/3 5/3( ) (3/10)(6 ) ( )TF
σ στ π ρ≡r r , (63) 

 
the Weisacker expression, 
 

 .( ) (1/8)( ( ) ( ))W
σ σ στ ρ ρ= ∇ ∇r r r , (64) 

 
 
 

 
 
Figure 6. Models for the local kinetic energy including 
the Thomas–Fermi model, ( )TF rστ , Weisacker model, 

( )W rστ , and the gradient expansion ( )grad rστ . These 
models are computed for the neon atom, and compared to 
the accurate kinetic energy density, τσ(r), which is de-
noted with a heavy solid line. 
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and the conventional gradient expansion, 
 

 2( ) ( ) (1/9) ( ) (1/ 6) ( ).grad TF W
σ σ σ στ τ τ ρ= + + ∇r r r r  (65) 

 
As previously noted by Tsirelson and coworkers, the 
gradient expression is rather accurate except in re-
gions very near the nucleus, where the Laplacian of 
the electron density,  
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2
2

( ) 2 ( )
( )

r rr
σ

ρ ρ
ρ

∂ ∂
∇ = −

∂∂
r r

r  (66) 

 
diverges. Near the nucleus, however, only the atomic 
1s orbital contributes to the kinetic energy, so the 
Weisacker term is rather accurate. This suggests that 
we consider a form of the kinetic energy like  
 

 mod ( ) ( ) ( ) (1 ( )) ( )W gradt w t w tσ σ σ= + −r r r r r  (67) 

 
where w(r) is a weight function that is close to one 
near atomic nuclei, and small elsewhere. Based on 
the fact that the 1s orbital of the one-electron atom 
with atomic number Z falls off to half its value at the 
nucleus at  
 
 1/ 2 ln(2) / ,r Z=  (68) 

 
 
 

 
 
Figure 7. Models for the kinetic energy density based 
on switching from the kinetic energy density of the gradi-
ent expansion to the Weisacker kinetic energy density us-
ing w1(r) (69) and w2(r) (70). The form of the kinetic 
energy density is computed using (67) and denoted 

mod,1( )στ r  and mod,2 ( )στ r  according to whether w1(r) or 
w2(r) is employed. Results are compared to the accurate 
kinetic energy density of the neon atom, τ(r). Outside the 
range plotted here, dependence on the weight function is 
almost indistinguishable.  

we expect that for values of r greater than r1/2 the 
gradient expansion will be satisfactory, while for 
smaller values of r the 1s orbital is dominant and the 
Weisacker form should be acceptable. We consider 
two possible forms for the “switching function” 
w(r),  
 

 
2ln(2)( / ln(2))

1( ) Zrw e−=r  (69) 
 

 
4ln(2)( / ln(2))

2 ( ) .Zrw e−=r  (70) 

 
Both weight functions are equated to 1

2  when r = r1/2, 
and so both functions switch from the Weisacker 
form to the gradient expansion in a similar way. As 
seen in figure 7, the latter form, (70), is superior for 
canceling out the singularity in the Laplacian, while 
the former expression is arguably simpler and more 
intuitive.  
 Tsirelson and coworkers have already demon-
strated that the kinetic energy density from the gra-
dient expansion is accurate enough to recover the 
electron localization function except in the immedi-
ate vicinity of the nucleus. It is unsurprising, then, 
that the present “correction” to the kinetic-energy 
density (using w2(r) in (67); see figure 8) also repro-
duces the electronic shell structure. The shell structure 
is less pronounced, however, when the approximate 
kinetic-energy density is used, though the shell 
structure is still decisively apparent when , ( )R G

iσζ r  
is considered. 
 This generally favorable result suggests that we 
could approximate the kinetic-energy density of a 
molecule with an expression of the form (67), where  
 
 

 
 
Figure 8. Electron-localization functions based on the 
local covariances, , ( )h G

iσζ r  (44), and , ( )R G
iσζ r  (62), of 

the neon atom. Unlike figure 5, here the covariances are 
computed using the approximate kinetic-energy density 
defined using (67) and (70). 
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4ln(2)( | |/ ln(2))( ) .Zw e α α

α

− −= ∑ r Rr  (71) 

 
Here, {Zα} and {Rα} denote the nuclear charges and 
positions. While w2(r) will be greater than one near 
the nuclei of polyatomic systems, the extreme local-
ity of the quartic form dictates that this will not be 
problematic for any reasonable nuclear configura-
tion. (Similarly, we expect no problems if a Gaus- 
 
 

 

 

 
 
Figure 9. The electron-localization function of Becke 
and Edgecombe, ( )BE

iσξ r , and the local covariance, 
, ( )R G

iσζ r  (62), are plotted for the (a) argon, (b) krypton, 
and (c) xenon atoms. The hyperbolic tangent transforma-
tion, (46), is employed. A logarithmic scale is used to 
elucidate shell structure near the atomic cores. The dotted 
trace corresponds to the transformed local covariance 
(L ,[ ]R G

σζ ) and the solid trace corresponds to the trans-
formed Becke–Edgecombe localization measure (L[ ]BE

σξ ). 

sian form, analogous to (69), were used in (71).) Fi-
nally, we mention that if we multiply the Laplacian 
term in , ( )R G

iσζ r  by 1–w(r), then the anomalous be-
havior of this local covariance near atomic nuclei is 
removed. (If this modification is made, then 

, ( )R G
iσζ r  ≈ , ( )h G

iσζ r  in any region where w(r) ≈ 1.)  

2.6 Extensibility to other systems 

The preceding five sections are intended to elucidate 
the theoretical foundations of electron localization 
functions and, in particular, the approach to electron 
localization functions through local measures of the 
covariance. Motivated largely by the importance of 
first and second-row atoms to chemistry, the neon 
atom was used as a pedagogical example of the key 
concepts. It remains to be seen, though, to what ex-
tent the results are extensible to the remainder of the 
periodic table. Figures 9 and 10 address this issue. 
 Figure 9 shows that, even for heavier atoms, the 
localization indicator based on the correlation ma-
trix, , ( )R G

iσζ r , works very effectively. Indeed, in the 
valence regions of the molecule, indicators based on 

, ( )R G
iσζ r  seem to work better than those based on the 

usual Becke–Edgecombe analysis. The opposite is 
true near the atomic nuclei. Based on the overween-
ing importance of valence electrons in chemistry, 
further studies of the localization measure, 
 

 Lσ
, , , 1[ ] tanh( ( ) ( ( )) ),R G R G R G

i iσ σ σζ ζ ζ −≡ −r r  (72) 

 
seem warranted. The main difference between local-
ization measures based on the local covariance, 

, ( )R G
iσζ r , and the Becke-Edgecombe analysis, 

( )BE
iσζ r , is that the peaks in the shell structure from 

the local covariance seem to be shifted outward with 
respect to those from ( )BE

iσζ r . However, the qualita-
tive picture arising from the two measures of elec-
tron localization is, as expected, similar. 
 The author also explored whether the corrected 
local kinetic energy defined by (67) and (71) was 
accurate for heavier atoms. Indeed it is: the weight 
function in (71) seems to be appropriate at least for 
the systems studied here (Ne, Ar, Kr, Xe), and based 
on this is likely appropriate throughout the periodic 
table. As was already observed for the neon atom, 
electron localization measures using the approxi-
mate kinetic energy density based on the gradient 
expansion are, in general, less accurate than those 
using the accurate kinetic-energy density. (See fig-
ure 10.) However, it seems clear that approximate 
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kinetic-energy densities are adequate for determin-
ing electron localization functions. (This seems to be 
especially true in the chemically important valence 
regions where, unsurprisingly, the electron density is 
varying more slowly and so the gradient expansion 
is more accurate.) 
 
 
 

 

 

 
 
Figure 10. The electron-localization function of Becke 
and Edgecombe, ( )BE

iσξ r , and the local covariance, 
, ( )R G

iσζ r  (62), are plotted for the (a) argon, (b) krypton, 
and (c) xenon atoms. The hyperbolic tangent transforma-
tion, (46), is employed. A logarithmic scale is used to 
elucidate shell structure near the atomic cores. Unlike 
figure 9, here the covariances are computed using the ap-
proximate kinetic-energy density defined using (67) and 
(70). The dotted trace corresponds to the transformed lo-
cal covariance (L ,[ ]R G

σζ ) and the solid trace corresponds 
to the transformed Becke–Edgecombe localization meas-
ure (L [ ]BE

σξ ). 

3. Summary 

The primary contribution of this paper is to show 
that the electron localization function of Becke and 
Edgecombe, ( )BE

iσζ r , (5), is related to the magnitude 
of the local covariance, as expressed through ( )h

iσζ r  
(cf. (43)). Here, the local covariance measures the 
correlation between electrons at ri and other points, 
rj. (The local covariance is computed by considering 
the covariance, 2

ijσ , between the number of electrons 
in distinct regions of the molecule, Ωi and Ωj, and 
then allowing the number of regions to approach in-
finity and the volume of the regions to approach 
zero.) Equivalently, ( )h

iσζ r  measures the fluctuation 
in the number of electrons at the point ri. These con-
siderations establish the link between the electron 
localization measure of Becke and Edgecombe and 
the venerable studies of Daudel. Significantly, ad-
dressing the covariance obviates the need to invoke 
the existence of a “reference system” when deriving 
measures for electron localization.  
 A secondary contribution is the consideration of 
the correlation matrix, 2 2 2/ .ij ij ii jjR σ σ σ=  In the limit 
of infinitesimal regions, we again acquire a local 
measure of the covariance, denoted ( )R

iσζ r . For the 
systems considered here, this index seems to per-
form better than other measures of electron localiza-
tion in the chemically important valence regions of 
atoms. It is not entirely clear why this is so, but one 
may theorize that this measure combines terms nor-
mally associated with electron localization function 
(notably, the difference between the kinetic energy 
density and the Weisacker approximant thereto) 
with the Laplacian of the electron density. Since 
these quantities, separately, are useful for elucidat-
ing shell structure, it is unsurprising that their com-
bination would also be useful. Unfortunately, the 
introduction of the absolute value in (58) is a prag-
matic choice, and does not have a strong theoretical 
motivation. Further studies of ( )R

iσζ r  are clearly 
warranted. 
 It was observed that a transformation of the de-
pendent variable (either ξσ(ri) or ζσ(ri)) is helpful for 
elucidating the shell structure in electron localiza-
tion measures. The hyperbolic tangent form ((46) or, 
more generally, (48)), seems to be particularly use-
ful in this context, and should be strongly consid-
ered as an alternative to the more commonly used 
transformations. 
 The final portion of this study investigated 
evaluting the electron localization function in the 
context of orbital-free density-functional theory. 
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While this sometimes eliminates the time-consum-
ing process of determining Kohn–Sham orbitals, un-
fortunately, the approximate kinetic energy density 
used here obscures (though does not eliminate) the 
shell structure in the electron localization function. 
It would be interesting to look at other, more sophis-
ticated, models for the local kinetic energy density.37  
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